Ultraproducts in logic and group theory

Martino Lupini

York University Toronto, Canada

April 18, 2012

Logic for metric structures

Logic for metric structures is a generalization of the usual first order logic.

It can be successfully used to **study algebraic**, **geometric or analytic structures** that

- either are naturally endowed with a (nontrivial) complete bounded metric (ex.: valuation rings);
- or can be described in terms of (almost) isometric embeddings into such structures (ex.: sofic and hyperlinear groups).

Languages

Definition

A (metric) language \mathcal{L} is a collection of

- function symbols f,
- ▶ each one with prescribed arity $a(f) \in \mathbb{N}$,
- ▶ and prescribed continuity modulus $\omega(f)$: $\mathbb{R}_+ \to \mathbb{R}_+$.

An \mathcal{L} -structure \mathcal{S} is given by

- a complete metric space S of diameter at most 1, called the support of S;
- ▶ the interpretation in S of any function symbol f in L, namely a uniformly continuous function $f^S: S^n \to S$, where n is the arity of f, having $\omega(f)$ as uniform continuity modulus.

Definition

A (metric) language \mathcal{L} is a collection of

- **▶** function symbols *f* ,
- ▶ each one with prescribed **arity** $a(f) \in \mathbb{N}$,
- ▶ and prescribed **continuity modulus** $\omega(f)$: $\mathbb{R} \to \mathbb{R}$.

For example, one can consider a language \mathcal{L}_0 containing

- a unique binary function symbol
- with the identity as uniform continuity modulus.

Structures

Definition

An \mathcal{L} -structure \mathcal{S} is given by

- a complete metric space S of diameter at most 1, called the support of S;
- ▶ the **interpretation** in S of any function symbol f in \mathcal{L} , namely a uniformly continuous function $f^S: S^n \to S$, where n is the arity of f, having $\omega(f)$ as uniform continuity modulus.

For example, an \mathcal{L}_0 -structure is

- a complete metric space with diameter at most 1,
- endowed with a binary operation that is 1-Lipschitz in every variable.

Metric symbol

The **special symbol** *d* will be considered a logic symbol.

The **interpretation** of d in a structure S will be the metric d^S of the metric space S.

In the following, all the metrics will be assumed to be complete and bounded by 1.

Language for bi-invariant metric groups

Suppose that *G* is a **group** endowed with a bi-invariant metric.

Both multiplication and inversion are isometric in every variable.

In particular, they are 1-Lipschitz in every variable. One can then define the language \mathcal{L}_{Gr} of bi-invariant metric groups, having as function symbols

- ▶ · of arity 2
- ightharpoonup ()⁻¹ of arity 1
- e of arity 0

each one with the identity as uniform continuity modulus.

A (particular) bi-invariant metric group can be seen as a structure in the language of bi-invariant metric groups.

Symmetric and unitary groups

The following bi-invariant metric groups have a key role in the study of sofic and hyperlinear groups.

For $n \in \mathbb{N}$, define

- ▶ \mathfrak{S}_n the group of permutations of $\{1, 2, ..., n\}$
- ▶ U_n the group of $n \times n$ unitary matrices.

endowed with the bi-invariant metrics

- $d^{\mathfrak{S}_n}(\sigma,\tau) = \frac{1}{n} \left| \left\{ i \in \{1,2,\ldots,n\} \mid \sigma(i) \neq \tau(i) \right\} \right|$
- $d^{U_n}(A,B) = \frac{1}{2\sqrt{n}} \|A B\|_2$

Discrete groups as bi-invariant metric groups

A **discrete group** G can (and will be in the following) regarded as a bi-invariant metric group, endowed with the **trivial metric** d^G defined by

$$d^{G}(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{otherwise.} \end{cases}$$

Terms

If $\mathcal L$ is a language, the $\mathcal L$ -terms are all the expressions constructed

- \triangleright starting from some variable symbols $x, y, z \dots$
- ▶ and composing them with the function symbols.

An \mathcal{L}_{Gr} -term (in the variables x, y, z, ...) is just a word (in $x, x^{-1}, y, y^{-1}, z, z^{-1}, ...$).

For example,

- $xyx^{-1}y^{-1}$
- ▶ e

are \mathcal{L}_{Gr} -terms, whose **interpretations** in a bi-invariant metric group are, respectively

- ▶ the function associating to two elements their commutator;
- ▶ the function constantly equal to the identity of the group.

Interpretation of terms

If $w=w\left(x_1,\ldots,x_n\right)$ is an \mathcal{L}_{Gr} -term (i.e. a word) in the variables x_1,\ldots,x_n ,

its interpretation

$$w^G: G^n \to G$$

is the function associating to an n-tuple (a_1, \ldots, a_n) of elements of G the element of G obtained replacing x_i with a_i in w and evaluating in G.

More generally, if \mathcal{L} is any language, t is an \mathcal{L} -term and \mathcal{S} is and \mathcal{L} -structure,

the **interpretation** $t^{\mathcal{S}}$ of t in \mathcal{S} is a function on the support defined in terms of the interpretations in \mathcal{S} of the function symbols of \mathcal{L} .

Basic formulas

A **basic** \mathcal{L} -**formula** is an expression of the form

$$d(t, \tilde{t})$$

where t, \tilde{t} are two \mathcal{L} -terms.

For example

$$d\left(xyx^{-1}y^{-1},e\right)$$

is a basic \mathcal{L}_{Gr} -formula.

Its interpretation in a bi-invariant metric group is a function assigning to two elements the distance of their commutator from the identity.

Interpretation of basic formulas

If $w = w(x_1, ..., x_n)$ and $\tilde{w} = \tilde{w}(x_1, ..., x_n)$ are \mathcal{L}_{Gr} -terms and G is a bi-invariant metric group, the **interpretation** of $d(w, \tilde{w})$ in G is

$$d^{G}\left(w^{G}, \tilde{w}^{G}\right)$$

More generally, if \mathcal{L} is a language, $t = t(x_1, ..., x_n)$, $\tilde{t} = \tilde{t}(x_1, ..., x_n)$ are \mathcal{L} -terms and \mathcal{S} is an \mathcal{L} -structure, the **interpretation** of $d(t, \tilde{t})$ in \mathcal{S} is

$$d^{\mathcal{S}}\left(t^{\mathcal{S}}, \tilde{t}^{\mathcal{S}}\right)$$

Formulas

We will call \mathcal{L} -formulas all the expressions constructed

- starting from basic L-formulas,
- ▶ composing with continuous functions $q:[0,1]^n \to [0,1]$, and
- ightharpoonup taking \sup_x and \inf_x with respect to some variable x.

For example

$$\sup_{x} \sup_{y} d\left(xyx^{-1}y^{-1}, e\right)$$

is an \mathcal{L}_{Gr} -formula (with no free variables).

Suppose that φ is the $\mathcal{L}_{\textit{Gr}}$ -formula

$$\sup_{x} \sup_{y} d\left(xyx^{-1}y^{-1}, e\right)$$

as before.

The interpretation φ^G of φ in a bi-invariant metric group G is the supremum of distances of commutators from the identity in G.

G will be abelian iff $\varphi^G = 0$.

The smaller φ^G is, the closer G is to be abelian.

Interpretations of more general formulas are defined in the expected way.

Unbounded metric structures

This model-theoretic framework can be generalized in order to deal with metric structures with not necessarily bounded metrics , such as

- Banach spaces;
- C*-algebras;
- tracial von Neumann algebras
- ► II₁ factors...

The general constructions and results that I will mention go through with in this broader setting.

Reduced products

Suppose that

- $(S_n)_{n\in\mathbb{N}}$ is a sequence of \mathcal{L} -structures;
- $\triangleright \mathcal{F}$ is a **filter** over \mathbb{N} .

Consider the pseudometric $d^{\mathcal{F}}$ on $\prod_{n\in\mathbb{N}} S_n$ defined by

$$d^{\mathcal{F}}\left(\left(a_{n}\right)_{n\in\mathbb{N}},\left(b_{n}\right)_{n\in\mathbb{N}}
ight)=\mathcal{F}-\limsup_{n\in\mathbb{N}}d^{\mathcal{S}_{n}}\left(a_{n},b_{n}
ight)$$

The (metric) reduced product $S_{\mathcal{F}}$ of the sequence $(S_n)_{n\in\mathbb{N}}$ with respect to \mathcal{F} is the \mathcal{L} -structure that has

- ▶ as support, the metric space obtained as a quotient of the pseudometric space $(\prod_{n\in\mathbb{N}} S_n, d^{\mathcal{F}})$;
- ▶ as interpretation $f^{\mathcal{S}_{\mathcal{F}}}\left(\left[\left(a_{n}\right)_{n\in\mathbb{N}}\right]\right)=\left[\left(f^{\mathcal{S}_{n}}\left(a_{n}\right)\right)_{n\in\mathbb{N}}\right]$ as interpretation of the function symbol f.

In particular,

- ▶ if \mathcal{F} is the principal filter generated by $k \in \mathbb{N}$, $\mathcal{S}_{\mathcal{F}} \simeq \mathcal{S}_k$;
- if $\mathcal{F} = \mathcal{U}$ is a nonprincipal ultrafilter, then $\mathcal{S}_{\mathcal{U}}$ is an ultraproduct;
- if \mathcal{F} is the Fréchet filter, then $\mathcal{S}_{\mathcal{F}}$ is the so called ℓ^{∞}/c_0 -product.

Observe that, if S_n is separable for every $n \in \mathbb{N}$ then $S_{\mathcal{F}}$ has density character at most \mathfrak{c} .

In particular, one can consider \mathcal{L}_{Gr} and the sequence $(\mathfrak{S}_n)_{n\in\mathbb{N}}$.

The reduced product $\mathfrak{S}_{\mathcal{F}}$ has

▶ as support, $\prod_{n\in\mathbb{N}} \mathfrak{S}_n$ modulo the equivalence relation

$$(a_n)_{n\in\mathbb{N}}\sim (b_n)_{n\in\mathbb{N}} \ \text{iff} \ \mathcal{F}-\limsup_{n\in\mathbb{N}} d^{\mathfrak{S}_n}\left(a_n,b_n\right)=0,$$

endowed with the metric

$$d^{\mathfrak{S}_{\mathcal{F}}}\left(\left[\left(a_{n}\right)_{n\in\mathbb{N}}\right],\left[\left(b_{n}\right)_{n\in\mathbb{N}}\right]\right)=\mathcal{F}-\limsup_{n\in\mathbb{N}}d^{\mathfrak{S}_{n}}\left(a_{n},b_{n}\right);$$

as operations, the pointwise multiplication

$$\left[\left(a_{n}\right)_{n\in\mathbb{N}}\right]\cdot\left[\left(b_{n}\right)_{n\in\mathbb{N}}\right]=\left[\left(a_{n}b_{n}\right)_{n\in\mathbb{N}}\right].$$

Sofic groups

Suppose G is a countable discrete group.

Definition

G is sofic if $\forall \varepsilon > 0$, $\forall F \subset G$ finite, there is $\varphi : G \to \mathfrak{S}_n$ (for some $n \in \mathbb{N}$) preserving all the operations and the distance up to ε on F.

This means that, for all $g, h \in F$,

$$\qquad \qquad d^{\mathfrak{S}_{n}}\left(\varphi\left(gh\right),\varphi\left(g\right)\varphi\left(h\right)\right)<\varepsilon;$$

$$ightharpoonup d^{\mathfrak{S}_n}\left(\varphi\left(e^{\mathsf{G}}\right),e^{\mathfrak{S}_n}\right)<\varepsilon;$$

$$|d^{\mathfrak{S}_{n}}(\varphi(g),\varphi(h)) - d^{\mathsf{G}}(g,h)| < \varepsilon.$$

Universal sofic groups

If G is a countable discrete group, TFAE

- G is sofic;
- ▶ for every filter \mathcal{F} over \mathbb{N} extending the Fréchet filter, there is an isometric embedding $\phi: G \rightarrow \mathfrak{S}_{\mathcal{F}}$;
- ▶ for some filter \mathcal{F} over \mathbb{N} extending the Fréchet filter, there is an isometric embedding $\phi: G \to \mathfrak{S}_{\mathcal{F}}$.

An isometric embedding is a function preserving all function symbols and the distance.

The reduced products $\mathfrak{S}_{\mathcal{F}}$ are hence universal sofic groups: a countable group is sofic iff it is (isometrically) isomorphic to a subgroup of any of them.

The hyperlinear case

The same result holds if one replaces

- sofic groups with hyperlinear groups, and
- symmetric groups with unitary groups.

If G is a countable discrete group, TFAE

- G is hyperlinear;
- ▶ for every filter \mathcal{F} over \mathbb{N} extending the Fréchet filter, there is an isometric embedding $\phi: G \rightarrow U_{\mathcal{F}}$;
- ▶ for some filter $\mathcal F$ over $\mathbb N$ extending the Fréchet filter, there is an isometric embedding $\phi: \mathsf G \to U_{\mathcal F}$.

Many outer automorphisms

Question

Are there outer automorphisms of $\mathfrak{S}_{\mathcal{U}}$? How many of them?

Answer

If CH holds, yes.

There are indeed 2^{\aleph_1} outer automorphisms.

This can be proved using logic for metric structures, via the notion of countable saturation.

Countable saturation

Suppose that $\mathcal S$ is an $\mathcal L$ -structure.

A sequence $(\varphi_n(x_1,\ldots,x_k))_{n\in\mathbb{N}}$ of \mathcal{L} -formulas with free variables x_1,\ldots,x_k and possibly parameters from \mathcal{S} is called

- ▶ satisfiable in S if there are $a_1, \ldots, a_k \in S$ such that $\varphi_n^S(a_1, \ldots, a_k) = 0$ for every $n \in \mathbb{N}$;
- ▶ finitely satisfiable in S if every $n \in \mathbb{N}$, the finite sequence $(\varphi_i(x_1, \ldots, x_k))_{i < n}$ is satisfiable in S.

We say that S is countably saturated if every **finitely satisfiable** in S sequence of formulas with parameters in S is satisfiable in S.

Ultraproducts and countable saturation

Theorem

A ultraproduct over \mathbb{N} of structures is countably saturated.

Theorem

If S is a countably saturated and has character density \aleph_1 , then $|\mathrm{Aut}\,(S)|=2^{\aleph_1}$.

Corollary

If CH holds, for every ultrafilter \mathcal{U} over \mathbb{N} , $\mathfrak{S}_{\mathcal{U}}$ and $U_{\mathcal{U}}$ have 2^{\aleph_1} (isometric) outer automorphisms.

Only inner automorphisms?

Open problem

Is there, consistently, a $\mathcal U$ such that all the (isometric) automorphisms of $\mathfrak S_{\mathcal U}$ or $U_{\mathcal U}$ are inner? And what about $\mathfrak S_{\mathcal F}$ for $\mathcal F$ a filter on $\mathbb N$ extending the Fréchet filter?

Theorem (Lücke and Thomas, 2010)

There is, consistently, a $\mathcal U$ such that the ultraproduct of the sequence of permutation groups regarded as discrete groups has only inner automorphisms.