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Abstract. We present a Fräıssé-theoretic perspective on the study of the Poulsen simplex and its properties.

1. Introduction

The Poulsen simplex is a canonical object in Choquet theory and convexity theory. Let us briefly recall the
basic notions and definitions from the theory of compact convex sets. By a compact convex set we mean a
compact subset K of a locally convex topological vector space. A compact convex set is endowed with a notion
of convex combinations. A point of a compact convex set is extreme if it can not be written in a nontrivial way
as a convex combination of elements of K. The extreme boundary ∂eK of K is the collection of extreme points
of K. Natural examples of compact convex sets are the standard simplices ∆n for n ∈ N. Concretely, one can
describe ∆n as the space of stochastic vectors in Rn+1. A metrizable Choquet simplex is a compact convex
set that can be realized as the limit of an inverse sequence of standard simplices with surjective continuous
affine maps as connective maps. Metrizable Choquet simplices can be regarded as the well-behaved compact
convex sets. Many equivalent characterizations of metrizable Choquet simplices are known, including ones due
to Choquet-Meyer, Bishop-de Leeuw, and Namioka-Phelps [6, 25, 26]. Many compact convex sets that arise in
the applications are metrizable Choquet simplices. For example, if A is a separable unital C*-algebra, then the
space of linear functionals of norm 1 on A satisfying τ(1) = 1 and τ(xy) = τ(yx) for x, y ∈ A is a metrizable
Choquet simplex, called the trace simplex of A. Any metrizable Choquet simplex can be obtained in this way.

One can associate with any compact metrizable space X the metrizable Choquet simplex P (X) of Borel
probability measures on X. The metrizable Choquet simplices of this form are precisely those with closed
extreme boundary (Bauer simplices). An example from 1961 due to Poulsen shows that such a property can
fail in a spectacular way. Poulsen constructed in [27] a (nontrivial) metrizable Choquet simplex whose extreme
boundary is dense in the whole simplex. While Poulsen’s original construction does not suggest any canonicity
in such an object, Lindenstrauss–Olsen–Sternfeld proved in 1978 that there exists a unique nontrivial metrizable
Choquet simplex with dense extreme boundary, hence called the Poulsen simplex P [22].

It is furthermore proved in [22] that the Poulsen simplex has the following universality and homogeneity
properties within the class of metrizable Choquet simplices: a compact convex set is a metrizable Choquet
simplex if and only if it is affinely homeomorphic to a closed proper face of P, and any affine homeomorphism
between closed proper faces of P extends to an affine homeomorphism of P. Additionally, one can assert that the
Poulsen simplex is generic among metrizable Choquet simplices, in the sense that the collection of metrizable
Choquet simplices affinely homeomorphic to P is a dense Gδ set in the space of metrizable Choquet simplices
endowed with a canonical Polish topology. Since then the Poulsen simplex has appeared in many places in the
literature. For instance, the simplex of invariant probability measures for the Bernoulli action of a countable
discrete group on an alphabet with two letters is the Poulsen simplex whenever the group does not have
Kazhdan’s property (T), and it is a Bauer simplex otherwise . Furthermore, when G is a countable nonabelian
free group, the space of weak equivalence classes of measure-preserving G-actions endowed with its canonical
topology and convex structure is the Poulsen simplex [8].

The present survey contains an exposition of some recent work from [23], where the Poulsen simplex and its
properties are studied from the perspective of Fräıssé theory for metric structures as recently developed in [3].
Some of these results had previously been obtained in an unpublished work of Conley and Törnquist. Another
approach to the study of the Poulsen simplex from Fräıssé-theoretic methods is considered in [20]. While the
main goal of [23] is to give a unified proof of various results about Fräıssé limits in functional analysis—including
results about the Gurarij space from [12, 17, 18, 19, 21]—in this short survey we consider the special instance
of the framework of [23] in the case of compact convex sets. This allows one to give Fräıssé-theoretic proofs of
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many known results about the Poulsen simplex from [22]. This framework has been used in [23, 9] to define
and construct the natural noncommutative analog of the Poulsen simplex. The model-theoretic properties of
the Poulsen simplex and its noncommutative analog are investigated in [14]. Finally, the Fräıssé-theoretic
description of the Poulsen simplex together with the Kechris–Pestov–Todorcevic correspondence between the
Ramsey property and extreme amenability [15, 24, 28] is used in [2] to compute of the universal minimal flow
of the Polish group of affine homeomorphisms of P. This turns out to be the canonical action on the Poulsen
simplex itself.

2. Function systems and the Kadison representation theorem

Suppose that T is a compact Hausdorff space. Let C(T ) be the space of real-valued continuous functions
on T . The space C(T ) has a distinguished element 1 (the unit) which is the function constantly equal to 1.
Concretely, a function system is a closed subspace V of C(T ) that is unital, in the sense that it contains the
unit. Function systems can be abstractly characterized as those real Banach spaces V with a distinguished
element 1 with the property that, for any x ∈ V such that ‖x‖ = 1, one has that ‖x+ 1‖ = 2 or ‖x− 1‖ = 2
[7, Section 2]. A linear map between function systems is unital if it maps the unit to the unit.

A function system V ⊂ C(T ) is endowed with a canonical notion of positivity, defined by letting an element a
of V be positive if it is a positive-valued function when regarded as an element of C(T ). Such a notion does not
depend on the concrete unital isometric representation of V as a space of continuous function on some compact
Hausdorff space. A linear map between function systems is positive if it maps positive elements to positive
elements. For a unital linear map being positive is equivalent to having norm 1.

Suppose that K is a compact convex set. Let A(K) be the space of real-valued continuous affine functions
on K. Then A(K) is a function system, as witnessed by the inclusion A(K) ⊂ C(K). Kadison’s representation
theorem [1, Theorem II.8.1] asserts that any function system arises in this way. Indeed, suppose that V is a
function system. Let S(V ) be the space of unital positive linear functionals. Then S(V ) is a weak*-compact
convex set, called the state space of V . The norm of an element a of V can be described as the supremum of
s(a) where s ranges in S(V ).

Any element a of V gives rise to a real-valued continuous function fa on S(V ) by point-evaluation. The
induced function V → A(S(V )), a 7→ fa is a surjective unital isometric linear map, which allows on to identify
V with A(S(V )). Furthermore the assignment V 7→ S(V ) is a contravariant equivalence of categories from
the category of function systems and unital positive linear maps to the category of compact convex sets and
continuous affine maps. Indeed a unital positive linear map φ : V → W induces a continuous affine function
φ† : S(W ) → S(V ), s 7→ s ◦ φ, and all continuous affine functions from S(W ) to S(V ) are of this form.
Furthermore φ is an isometry if and only if φ† is surjective. Using such a correspondence between compact
convex sets and function systems, one can equivalently formulate statements about compact convex sets as
statements about function systems. For instance, a compact convex set K is metrizable if and only if A(K) is
separable. If V is a separable function system, we let Aut(V ) be the Polish group of surjective unital isometric
linear maps from V to V , endowed with the topology of pointwise convergence. Then Aut(V ) admits a canonical
continuous action on the state space S(V ), defined by (α, s) 7→ s◦α−1. More generally if W is another separable
function system, then the space of unital positive linear maps from V to W is a Polish Aut(V )-space with respect
to the topology of pointwise convergence and the action (α, t) 7→ t ◦ α−1.

Consider now a standard simplex ∆n−1 for n ≥ 1. This is the set of stochastic vectors s = (s1, . . . , sn) ∈ Rn.
The corresponding function system A(∆n−1) is the space `∞n with norm ‖(x1, . . . , xn)‖ = max {|x1| , . . . , |xn|}
and unit (1, 1, . . . , 1). Indeed any element of ∆n−1 defines a state on `∞n by s (x1, . . . , xn) = s1x1 + · · ·+ snxn,
and any state on `∞n is of this form. The function systems `∞n for n ∈ N are precisely the finite-dimensional
function systems that are injective objects in the category of function systems and unital positive linear maps.
This can be seen as a consequence of the Hahn-Banach theorem.

Metrizable Choquet simplices are precisely those compact convex sets that can be realized as limits of an
inverse sequence of standard simplices with surjective continuous affine maps as connective maps. Equivalently,
a compact convex set K is a metrizable Choquet simplex if and only if the function system A(K) can be realized
as the limit of an inductive sequence of finite-dimensional injective function systems. In this case the function
system A(K) is called a separable simplex space. In the following we will assume all the function systems to be
separable, and all the compact convex sets to be metrizable.
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3. The Fräıssé limit of finite-dimensional function systems

The goal of this section is to prove that the class of finite-dimensional function systems is a Fräıssé class in
the sense of Fräıssé theory for metric structures [3]. Suppose that X,Y are function systems. An embedding
from X to Y is a unital isometric linear map. The amalgamation property for operator systems asserts that
if f0 : X → Y0 and f1 : X → Y1 are embeddings, then there exists a function system Z and embeddings
φ0 : Y0 → Z and φ1 : Y1 → Z such that φ0 ◦ f0 = φ1 ◦ f1. (Here and in the following, for an injective linear map
f : X → Y we denote by f−1 the linear map f−1 : f [X] → Y .) This can be verified as follows. Consider the
algebraic direct sum Y0 ⊕ Y1. Define a function system structure Z on Y0 ⊕ Y1 by letting the norm of (y0, y1)
be the supremum of |s0 (y0) + s1 (y1)| where (s0, s1) ∈ S(Y0) × S(Y1) are such that s0 ◦ f0 = s1 ◦ φ1. This
gives the desired function system Z, where the embeddings φ0 : Y0 → Z and φ1 : Y1 → Z are the first and
second coordinate inclusion map, respectively. In categorical terms, the function system Z is the pushout of the
morphisms f0 and f1.

The same argument allows one to prove an approximate version of the result above. In this case one considers
(not necessarily isometric) positive unital linear maps f0 : X → Y0 and f1 : X → Y1 that are invertible, and
furthermore the inverses are almost isometric in the sense that

∥∥f−1
0

∥∥ ≤ 1 + δ and
∥∥f−1

1

∥∥ ≤ 1 + δ for some δ.
One can now define the function system structure Z on Y0 ⊕ Y1 similarly as above, by considering the pairs
(s0, s1) ∈ S(Y0) × S(Y1) such that ‖s0 ◦ f0 − s1 ◦ f1‖ ≤ 2δ. We call the corresponding function system Z the
approximate pushout of f0 and f1 with tolerance δ. Observe that when Y0, Y1 are finite-dimensional, then Z is
also finite-dimensional. If furthermore Y0, Y1 are finite-dimensional and injective, i.e. Y0 = `∞d0 and Y1 = `∞d1 for
some d0, d1 ∈ N, then one can simply take Z = Y0 ⊕∞ Y1 = `∞d0+d1

.
To verify that the coordinate inclusions maps φ0 : Y0 → Z and φ1 : Y1 → Z are embeddings one needs

to observe that “approximately contractive” unital linear maps can be approximated by positive unital linear
maps. Precisely, if W is a function system and t : W → `∞n is a unital linear functional on W of norm at
most 1 + δ, then there exists a positive unital linear map s : W → `∞n such that ‖s− t‖ ≤ 2δ. This is a
consequence of the fact that an element w of W can be written as w = w0 − w1 where w0, w1 are positive and
‖w‖ = ‖w0‖+ ‖w1‖; see [1, Proposition II.1.14].

Using the approximate amalgamation property for function systems one can verify that the class of finite-
dimensional function systems is a (metric) Fräıssé class in the sense of [3]. One can also construct explicitly the
Fräıssé limit as follows. Fix, for every n ∈ N, a countable dense subset Dn of `∞n . Let (ān,k) be an enumeration
of the finite injective tuples of elements of Dn, and set En,k := span {1, ān} ⊂ `∞n . For every n, k,m, d ∈ N let
En,k,d,m be a 2−m-dense set of embeddings from En,k to `∞d , where the distance in the space of embeddings is
given by d (φ, ψ) = ‖φ− ψ‖.

Using the approximate pushout construction from above, one can define recursively sequences (dj), (ηj), (F )
such that

(1) dj ∈ N and ηk : `∞dj → `∞dj+1
are unital isometric linear maps,

(2) Fn,k,j is a 2−(j+1)-dense collection of injective positive unital linear maps from En,k to `∞dj ,

(3) for every d, n, k ≤ j, f ∈ Fn,k,j , and φ ∈ En,k,d,j there exists f̂ : `∞d → `∞dj+1
such that

∥∥∥f̂ ◦ φ− ηj ◦ f∥∥∥ ≤
2−j .

Let now V be the inductive limit of the sequence (`∞dj ) with connective maps ηj : `∞dj → `∞dj+1
. We claim

that V has the following property, which we call the stable extension property : whenever E,F are finite-
dimensional function systems, and φ : E → F and f : E → V are injective unital positive linear maps such

that
∥∥φ−1

∥∥ < 1 + δ and
∥∥f−1

∥∥ < 1 + δ, then there exists a unital isometric linear map f̂ : F → V such that∥∥∥f̂ ◦ φ− f∥∥∥ < 2δ. This is a consequence of the construction above together with the following observations.

The class of finite-dimensional injective function systems is approximately cofinal, in the sense that any finite-
dimensional function system approximately embeds into `∞d for some (large enough) d ∈ N. Furthermore the
small perturbation lemma in Banach space theory guarantees that the topology in the space of linear maps
from a finite-dimensional function system X to a function system Y induced by the distance d (ϕ,ψ) = ‖ϕ− ψ‖
coincides with the topology of pointwise convergence.

A back-and-forth argument, similar to the one in the proof of [21, Theorem 1.1] allows one to deduce from
the stable extension property that V has the following stable homogeneity property : if E is a finite-dimensional
function system, and φ : E → V and f : E → V are injective unital positive linear maps such that

∥∥φ−1
∥∥ < 1+δ

and
∥∥f−1

∥∥ < 1 + δ, then there exists an automorphism α of V such that ‖α ◦ φ− f‖ < 2δ. The same back-and-
forth argument shows that there exists a unique, up to a unital linear isometric isomorphism, separable function
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system that satisfies the stable extension property. Furthermore, the stable extension property as stated above
is equivalent to the same assertion where E,F are injective finite-dimensional operator systems and φ, f are
unital isometric linear maps, and a one-sided version of the same argument shows that any separable function
system embeds into V.

By construction, V is a separable simplex space, being realized as the limit of a sequence of finite-dimensional
injective function systems with unital isometric linear connective maps. The state space S(V) is therefore
a metrizable Choquet simplex. We will explain in the next section how to see that S(V) has dense extreme
boundary.

From a model-theoretic perspective, one can regard function systems as a metric structures in the sense of
[4]. The corresponding language contains function symbols for the vector space operations, a constant symbol
for the unit, and a predicate symbol for the norm. One can see that the stable homogeneity property of V
is elementary, and therefore V is the unique separable model of its first-order theory. As a consequence the
automorphism group Aut(V) of V is a Roelcke precompact Polish group; see [5, Definition 2.2]. Furthermore
using [4, Proposition 13.6] one can conclude that the first-order theory of V admits elimination of quantifiers,
and that the theory of V is the model completion of the theory of function systems. Finally, one can give the
following model-theoretic characterization of simplex spaces: a function system W is a simplex space if and
only if it is existentially closed. This means that whenever a quantifier-free type is approximately realized in a
function system V ⊃W , then it is also approximately realized in W ; see also [14].

4. Function systems with a distinguished state

In this section we still denote by V the Fräıssé limit of the class of finite-dimensional function systems as
constructed in the previous section. We will prove that the state space S(V) has dense extreme boundary. To
this purpose, we consider the class of function systems with a distinguished state. A similar argument as the
one in the previous section shows that such a class satisfies amalgamation. Indeed suppose that f0 : X → Y0

and f1 : X → Y1 are invertible unital positive linear maps such that
∥∥f−1

0

∥∥ ≤ 1+δ and
∥∥f−1

1

∥∥ ≤ 1+δ, and that
Z is the approximate pushout of f0, f1 with tolerance δ defined as in the previous section. Let φ0 : Y0 → Z and
φ1 : Y1 → Z be the canonical embeddings. Then it follows from its definition that the approximate pushout
has the following universal property: if W is a function system, and g0 : Y0 → W and g1 : Y1 → W are unital
positive linear maps such that ‖g0 ◦ f0 − g1 ◦ f1‖ ≤ 2δ, then there exists a unique unital positive linear map
t : Z → W such that t ◦ φ0 = g0 and t ◦ φ1 = g1. In particular, if s0 ∈ S(Y0) and s1 ∈ S(Y1) are states such
that ‖s0 ◦ f0 − s1 ◦ f‖ ≤ 2δ, then there exists a unique state s on Z such that s ◦ φ0 = s0 and s ◦ φ1 = s1.

It follows from the remarks above that the class of finite-dimensional function systems with a distinguished
state is a Fräıssé class. By uniqueness of the Fräıssé limit, one can regard the corresponding Fräıssé limit as a
distinguished state sV on V. Such a state is uniquely characterized, up to an automorphism of V, by the following
property: if E0, E1 are finite-dimensional function systems, s ∈ S (E1), and φ : E0 → E1 and f : E0 → V are
injective unital positive linear maps such that

∥∥φ−1
∥∥ < 1 + δ,

∥∥f−1
∥∥ < 1 + δ, and ‖sV ◦ f − s ◦ φ‖ < 2δ, then

there exist a unital linear isometry f̂ : E1 → V such that
∥∥∥f̂ ◦ φ− f∥∥∥ < 2δ and sV ◦ f̂ = s. This is in turn

equivalent to the same assertion where E0, E1 are finite-dimensional injective operator systems, and f, φ are
unital isometric linear maps. Such a characterization implies that the Aut(V)-orbit of sV is a dense Gδ subspace
of the state space S(V). In order to conclude that S(V) has dense extreme boundary, it remains to observe that
sV is an extreme point.

Suppose that t0, t1 ∈ S(V) and λ ∈ (0, 1) are such that λt0 + (1− λ) t1 = s. Fix a unital isometric
linear map f : `∞d → V and ε > 0. Consider the unital linear isometry φ : `∞d → `∞d+1, (x1, . . . , xd) 7→
(x1, . . . , xd, (sV ◦ f) (x1, . . . , xd)), and let e ∈ S

(
`∞d+1

)
be the state e (x1, . . . , xd+1) = xd+1. Then there exists a

unital linear isometry f̂ : `∞d+1 → V such that
∥∥∥f̂ ◦ φ− f∥∥∥ ≤ ε and sV ◦ f̂ = e. Since e is an extreme point of

S
(
`∞d+1

)
we have that t0 ◦ f̂ = t1 ◦ f̂ = e. Hence ‖t0 ◦ f − sV ◦ f‖ ≤ ε. Since this is true for any unital linear

isometry f : `∞d → V and any ε > 0, we can conclude that t0 = sV. This concludes the proof that sV is an
extreme point of the state space of V.

The argument above shows that S(V) is a metrizable Choquet simplex with dense extreme boundary. In the
following section, we will observe that in fact the set of extreme points of S(V) is equal to the Aut(V)-orbit of
sV, and that S(V) is the unique nontrivial metrizable Choquet simplex with dense extreme boundary.
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5. Existence and uniqueness of the Poulsen simplex

In this section we still denote by V the Fräıssé limit of the class of finite-dimensional function systems, and
by sV the state on V obtained as the Fräıssé limit of the class of finite-dimensional function systems with a
distinguished state. We have proved before that sV is an extreme point of the state space of V. We now observe
that, conversely, any extreme point belongs to the Aut(V)-orbit of sV.

Indeed, suppose that W is a simplex space. Then one can characterize the extreme points of the state space
of W as those states t that satisfy the following: for any finite-dimensional function systems E0 ⊂ E1, unital
positive linear map f : E0 → W , state s ∈ S(E1) such that ‖t ◦ f − s|E0

‖ < ε, there exists a unital positive

linear map f̂ : E1 → W such that t ◦ f̂ = s and
∥∥∥f̂ |E0

− f
∥∥∥ < 3ε; see [23, Proposition 6.21]. From this and

the homogeneity property characterizing the Aut(V)-orbit of sV mentioned in the previous section, it follows
that any extreme point of the state space of V belongs to the Aut(V)-orbit of sV. In other words, Aut(V) acts
transitively on the extreme points of S(V).

The characterization of extreme points of a Choquet simplex recalled above admits the following gener-
alization. Suppose that A(K), A(F ) are simplex spaces, and P : A(K) → A(F ) is a unital linear quotient
mapping. This means that P maps the open unit ball of A(K) onto the open unit ball of A(F ). Then the image
{s ◦ P : s ∈ F} of F under the dual map P † is a closed face of K if and only if for any finite-dimensional function
systems E0 ⊂ E1, unital positive linear maps φ : E0 → E1 and g : E0 → V such that ‖t ◦ f − g|E0

‖ < ε, there

exists a unital positive linear map f̂ : E1 → W such that P ◦ f̂ = g and
∥∥∥f̂ |E0

− f
∥∥∥ < 3ε; see [23, Proposition

6.21]. Furthermore in this case one can regard P as the function A(K)→ A(F ), a 7→ a|F after one identifies F
with its image under the dual map P . One recovers the characterization of extreme points mentioned above in
the particular case when F is the trivial simplex.

We now observe that the state space of V is the unique nontrivial metrizable Choquet simplex with dense
extreme boundary. Indeed, suppose that K is a nontrivial metrizable Choquet simplex with dense extreme
boundary and A(K) be the corresponding simplex space. Our goal is to prove that A(K) satisfies the charac-
terizing property of the Fräıssé limit V of finite-dimensional function systems. To this purpose, fix d ∈ N, ε > 0,
and unital linear isometries f : `∞d → A(K) and φ : `∞d → `∞d+1. Since f is a unital linear isometry, without loss
of generality, we can assume that `∞d ⊂ A(K) and f : `∞d → A(K) is the inclusion map. One can also choose a
standard basis e1, . . . , ed of `∞d and a standard basis f1, . . . , fd+1 of `∞d+1 such that φ(ei) = fi+t(ei)fn+1 for some
state t on `∞d+1. Pick extreme points s1, . . . , sn of K such that si(ej) = δij . Since K by assumption is nontrivial
and has dense extreme boundary, there exists an extreme point sn+1 of K different from s1, . . . , sn such that
|sn+1(ej)− t(ej)| < ε for j = 1, 2, . . . , d. Define now the unital positive quotient mapping Q : A(K) → `∞d+1

by a 7→ (s1(a), . . . , sn+1(a)). Observe that the image of the state space of `∞d+1 under the dual mapping Q†

is precisely the convex hull of s1, . . . , sn+1. This is a closed face of K, since s1, . . . , sn+1 are extreme points.
Furthermore by the choice of s1, . . . , sn+1 the map Q satisfies

∥∥Q|`∞d − φ∥∥ < ε. Therefore there exists a unital

positive (necessarily isometric) linear map f̂ : `∞d+1 → A(K) such that Q ◦ f̂ is the identity map of `∞d+1 and∥∥∥f̂ ◦ φ− f∥∥∥ < 3ε. This concludes the proof that A(K) is unitally isometrically isomorphic to V, and hence K

is affinely homeomorphic to the state space of V.
The argument above—although presented in a slightly different language—is essentially the original argument

of Lindenstrauss–Olsen–Sternfeld in their proof of uniqueness of the Poulsen simplex [22]; see also [26]. From
now on we will denote by P the unique nontrivial Choquet simplex with dense extreme boundary, and call it
the Poulsen simplex. Consistently, we will identify the Fräıssé limit V of the class of finite-dimensional function
systems with the space A(P) of real-valued continuous affine functions on P. We will also identify the group
Aut(A(P)) of surjective unital linear isometries of A(P) with the group of affine homeomorphisms of P.

6. Homogeneity of the Poulsen simplex

Besides uniqueness of the Poulsen simplex, the main result of the paper [22] of Lindenstrauss–Olsen–Sternfeld
is that the Poulsen simplex P satisfies the following universality and homogeneity properties: any metrizable
Choquet simplex is affinely homeomorphic to a closed proper face of P, and any affine homeomorphism between
closed proper faces of P extends to an affine homeomorphism of P. In this section we will observe that these
results can be proved by adapting the techniques of the previous section.

Indeed, suppose that K is a metrizable Choquet simplex, and A(K) is the corresponding simplex space.
Then one can show that finite-dimensional function systems E with a distinguished unital positive linear map
s : E → A(K) form a Fräıssé class. When K is the trivial simplex, one recovers the class of finite-dimensional
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function systems with a distinguished state. The proof in the general case is entirely analogous, after observing
that A(K) satisfies the following property (which in fact characterizes simplex spaces among function systems):
whenever E0 ⊂ E1 are finite-dimensional function systems, f : E0 → A(K) is a unital positive linear map, and

ε > 0, there exists a unital positive linear map f̂ : E1 → A(K) such that
∥∥∥f̂ |E0 − f

∥∥∥ < ε. This follows from a

small perturbation argument and the fact that A(K) is the limit of an inductive sequence of finite-dimensional
injective function systems.

The Fräıssé limit of the class of finite-dimensional function systems with a distinguished positive linear map

to A(K) can be seen as a distinguished unital positive linear map Ω
A(K)
A(P) : A(P)→ A(K). Observe that the space

Aut(A(P)) has a canonical continuous action on the space of unital positive linear maps from A(P) to A(K).

As in the case when K is the trivial simplex, one can characterize the Aut(A(P))-orbit of Ω
A(K)
A(P) as those maps

of the form f 7→ f |F , where F is a closed proper face of P affinely homeomorphic to K and A(K) is identified

with A(F ). From existence of the Fräıssé limit Ω
A(K)
A(P) one can conclude that K is affinely homeomorphic to

a closed proper face of P. From functoriality of the assignment K 7→ Ω
A(K)
A(P) one can conclude that any affine

homeomorphism between closed proper faces extends to an affine homeomorphism of P.
It is proved in [2] that the class of finite-dimensional function systems satisfies the approximate Ramsey

property for embeddings. This is the natural analog in the setting of metric structures of the Ramsey property
for discrete structures, where colorings are replaced with [0, 1]-valued Lipschitz maps (continuous colorings),
and monochromatic sets are replaced with sets where the oscillation of the given continuous coloring is less
than a given strictly positive ε. The Kechris–Pestov–Todorcevic correspondence between the Ramsey property
of a Fräıssé classes of finitely-generated discrete structures and the extreme amenability of the automorphism
group of the corresponding Fräıssé limit [15] admits a natural generalization to the metric setting [24]. From
this one can deduce that, for any closed proper face F of P, the group of affine homeomorphisms of P that fix
F pointwise is an extremely amenable group. Particularly, the stabilizer Aut(P, e) of an extreme point of P is
extremely amenable. The latter fact allows one to compute the universal minimal flow of the group Aut(P)
of affine homeomorphisms of P. This is the canonical action Aut(P) y P. Minimality of such an action is a
result of Glasner [13], while universality follows by observing that P is Aut(P)-equivariantly homeomorphic to
the completion of the homogeneous space Aut(P) /Aut(P, e) .

7. The noncommutative Poulsen simplex

Noncommutative mathematics studies, broadly speaking, the mathematical structures that arise when clas-
sical physics is replaced with quantum physics. In this setting, many classical notions admit a natural noncom-
mutative generalization. The noncommutative analog of function systems is given by operator systems. Recall
that, concretely, a function system is a unital subspace of C(T ) for some compact Hausdorff space T . The
spaces C(T ) are precisely the abelian unital C*-algebra. In general, a (concrete) unital C*-algebra is a space A
of operators on a Hilbert space H with the property that A is invariant under taking compositions and adjoints,
it contains the identity operator (the unit), and it is closed in the topology induced by the operator norm.
Unital C*-algebras can be regarded as the noncommutative analog of compact Hausdorff spaces.

An operator system is a closed subspace V of a unital C*-algebra A that contains the identity operator and it
is invariant under taking adjoints. An operator system V is a function system when it can be represented inside
an abelian unital C*-algebra A. Operator systems can be regarded as the noncommutative analog of compact
convex sets.

Operator systems are in canonical correspondence with geometrical objects called compact matrix convex sets
[30, 10, 11, 29]. Suppose that W is a locally convex topological vector space. We denote by Mn(W ) the space of
n×n matrices with entries in W , endowed with its canonical topological vector space structure. We also denote
by Mn(C) the space of n×n complex matrices, and by Mn,k(C) the space of n×k complex matrices. A compact
matrix convex set is a sequence K = (Kn) of compact convex sets Kn ⊂Mn(W ) that is invariant under matrix
convex combinations. A matrix convex combination is an expression of the form α∗1v1α1 + · · · + α∗`v`α` where
vi ∈ Kni

, αi ∈Mni,n(C) is right invertible, and α∗1α1 + · · ·+ α∗`α` is the identity n× n matrix. Several notions
from convexity theory admits natural matrix convex analogs, obtained by replacing convex combinations with
matrix convex combinations. For instance, a matrix affine function between matrix convex sets K and K ′ is
a sequence of functions fn : Kn → K ′n that preserves matrix convex combinations. An element of a compact
matrix convex set is a matrix extreme point if it can not be written in a nontrivial way as a matrix convex
combination.
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One can assign in a natural way to a compact matrix convex set K an operator system A(K) whose elements
are the matrix affine functions from K to (Mn(C))n∈N. It is proved in [29] that, conversely, any operator system
V arises from a compact matrix convex set K in this way. Here Kn is the collection of all morphisms (in the
category of operator systems) from V to Mn(C), where Mn(C) is identified with the algebra of bounded linear
operators on an n-dimensional Hilbert space. Furthermore such a correspondence between compact matrix
convex sets and operator systems is functorial, and extends the correspondence between compact convex sets
and function systems.

The notion of noncommutative Choquet simplex has been introduced and studied in [9]. A compact matrix
convex set K is a (metrizable) noncommutative Choquet simplex if the corresponding operator system A(K) is
a (separable) nuclear operator system. Nuclearity is a regularity condition for operator systems that requires the
identity map to be the pointwise limit of morphisms that factor through finite-dimensional injective operator
systems. For function systems such a condition is equivalent to being a simplex space. Various equivalent
characterizations of noncommutative simplices can be given.

The natural noncommutative analog of the Poulsen simplex is defined and studied in [23, 9]. The non-
commutative Poulsen simplex NP is a (nontrivial) metrizable noncommutative Choquet simplex with a dense
set of matrix extreme points. It is proved in [23, 9] that the noncommutative Poulsen simplex exists, and
its corresponding operator system A(NP) is the unique nontrivial separable nuclear operator systems that is
universal in the sense of Kirchberg and Wassermann [16]. The operator system A(NP) can be realized as the
Fräıssé limit of the class of finite-dimensional operator systems. A unified approach to the study of the Poulsen
simplex and its noncommutative analog, as well as other Fräıssé limits in functional analysis, is presented in
[23]. It is also proved in [23] that any metrizable noncommutative Choquet simplex can be realized as a proper
noncommutative face of NP. Finally, the methods of [2] apply to show that the universal minimal flow of the
group Aut(NP) of matrix affine homeomorphisms of NP is the canonical action of Aut(NP) on the space of
positive unital linear functionals on A(NP); see [2].
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[18] Wies law Kubís, Fräıssé sequences: category-theoretic approach to universal homogeneous structures, Annals of Pure and

Applied Logic 165 (2014), no. 11, 1755–1811.
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