Groupoid L^p operator algebras (joint work with Eusebio Gardella)

Martino Lupini

York University and Fields Institute

June 26, 2014

Table of Contents

 \bigcirc L^p operator algebras

② Groupoids and their representations

3 Groupoids and inverse semigroups of slices

Table of Contents

 \bigcirc L^p operator algebras

② Groupoids and their representations

3 Groupoids and inverse semigroups of slices

L^p spaces

 λ is a Borel σ -finite measure on a standard Borel space Z

We will assume for convenience that λ is not purely atomic

 $L^p(\lambda)$ is the Banach space of p-summable functions on Z up to null sets

 $B(L^p(\lambda))$ is the Banach algebras of bounded linear operators on $L^p(\lambda)$

 $B(L^p(\lambda))$ is matricially normed by

$$M_n(B(L^p(\lambda))) \cong B(L^p(\lambda \times c_n))$$

where c_n is the counting measure on $\{0, 1, \dots, n-1\}$

L^p operator algebras

Definition

A concrete L^p operator algebra A is a closed subalgebra of $B(L^p(\lambda))$

A is matricially normed by

$$M_n(A) \subset M_n(B(L^p(\lambda))) \cong B(L^p(\lambda \times c_n))$$

A is this p-operator system s. t. every $M_n(A)$ is a Banach algebra

Definition

An abstract L^p operator algebra A is a matricially normed Banach algebra completely isometrically isomorphic to a concrete L^p operator algebra

Problem

Is there an abstract (intrinsic) characterization of L^p operator algebras?

Some previous works

The general theory of L^p operator algebras has been recently "launched" by Chris Phillips.

Among the examples he considered there are:

- L^p analogs of the Cuntz C*-algebras
- L^p analogs of the UHF C*-algebras
- ullet enveloping L^p operator algebras of locally compact groups

Subsequent work by Phillips-Viola, Gardella-Thiel, Pooya-Hejazian ...

Problem: generalizing results from C^* -algebras to L^p operator algebras

The main difference is that in L^p there is no adjoint for $p \neq 2$

Table of Contents

L^p operator algebras

2 Groupoids and their representations

3 Groupoids and inverse semigroups of slices

A groupoid approach

We studied representations of étale groupoids on L^p spaces constructing the associated enveloping L^p operator algebras

Goals:

- lacktriangle isolate the "good" representations of algebraic objects on L^p
- $oldsymbol{0}$ give a common generalization of the L^p UHF and Cuntz algebras
- ullet provide several new example of L^p analogs of "classical" C*-algebras (Cuntz-Krieger algebras, tiling algebras, graph algebras...)

Étale groupoids

A groupoid G is a small category where every arrow is invertible.

The set of objects is denoted by G^0 and identified with a subset of G

Source and range maps are denoted by

$$s, r: G \rightarrow G^0$$

A slice of G is a subset A of G such that s and r are 1:1 on A

A groupoid is locally compact when endowed with a locally compact topology making composition and inversion of arrows continuous

A locally compact groupoid is étale if it has a countable basis of open slices

Transformation groupoids

Suppose that

- Γ is a countable group
- X is a locally compact space
- $\Gamma \curvearrowright X$ is an action of Γ on X

The transformation groupoid $X \rtimes \Gamma$ is the set of triples

$$(\gamma x, \gamma, x)$$

for $\gamma \in \Gamma$ and $x \in X$ with composition

$$(\rho \gamma x, \rho, \gamma x)(\gamma x, \gamma, x) = (\rho \gamma x, \rho \gamma, x)$$

More generally one can consider transformation groupoids associated with

- local homeomorphism (Cuntz-Krieger and graph groupoids)
- (partial) action of inverse semigroups (these cover all étale groupoids)

The algebra of continuous compactly supported functions

The space $C_c(G)$ of continuous functions is a normed *-algebra with

multiplication by convolution

$$(f_0*f_1)(\gamma) = \sum_{\rho_0\rho_1=\gamma} f(\rho_0)f(\rho_1)$$

involution

$$(f^*)(\gamma) = \overline{f(\gamma^{-1})}$$

norm

$$\|f\|_{I} = \max \left\{ \sup_{x \in G^{0}} \sum_{r(\gamma)=x} |f(\gamma)|, \sup_{x \in G^{0}} \sum_{s(\gamma)=x} |f(\gamma)| \right\}$$

It is in fact matricially normed via the identification

$$M_n(C_c(G)) \cong C_c(n \times G \times n)$$

where $n \times G \times n$ is a suitable amplification of G_{n}

Representations of groupoids on bundles of Hilbert spaces

Suppose that G is an étale groupoid.

A representation of G on a Hilbert bundle is given by

- lacktriangledown a quasi-invariant probability Borel measure μ on G^0
- ② a Borel collection $(H_x)_{x \in G^0}$ of Hilbert spaces
- $oldsymbol{0}$ a Borel assignment $\gamma
 ightarrow \mathcal{T}_{\gamma}$ such that
- ullet T_{γ} is an invertible isometry from $H_{s(\gamma)}$ to $H_{r(\gamma)}$
- $T_{\gamma}T_{\rho}=T_{\gamma\rho}$ a.e.
- $\bullet \ \ T_{\gamma^{-1}}=T_{\gamma}^{-1} \ \text{a.e.}$

Representations of groupoids on bundles of L^2 spaces

In fact without loss of generality there are

- $oldsymbol{0}$ a standard Borel space Z
- ② a Borel surjection $q: Z \to G^0$
- **3** a σ -finite Borel measure λ on Z with disintegration $\int \lambda_x d\mu(x)$

such that $H_{x}=L^{2}\left(\lambda_{x}\right)$ for every $x\in\mathcal{G}^{0}$

Define Z_x to be the inverse image of x under q

Observe that λ_x is a σ -finite Borel measure on $Z_x = p^{-1} \{x\}$ for $x \in G^0$

Moreover if $\xi \in L^2(\lambda)$ then $\xi_{|Z_x} \in L^2(\lambda_x)$ for μ -a.e. $x \in G^0$

Integrated form of a representation

Consider as before the representation

$$\gamma \mapsto T_{\gamma} : L^{2}\left(\lambda_{s(\gamma)}\right) \to L^{2}\left(\lambda_{r(\gamma)}\right)$$

Is integrated form is the *I*-norm contractive *-homomorphism

$$\pi: C_c(G) \to B\left(L^2(\lambda)\right)$$

defined by

$$(\pi(f)\xi)_{\mid Z_{y}} = \sum_{r(\gamma)=y} f(\gamma)D^{-\frac{1}{2}}(\gamma) T_{\gamma}\xi_{\mid Z_{s(\gamma)}}$$

where D is the modular function of (G, μ)

Renault's disintegration theorem

Theorem (Renault, 1980)

Every I-norm contractive nondegenerate representation $\pi: C_c(G) \to B(L^2(\lambda))$ is of this form

Corollary

Every I-norm contractive nondegenerate homomorphism $\pi: C_c(G) \to B(L^2(\lambda))$ is a *-homomorphism.

The groupoid C*-algebra $C^*(G)$ is the enveloping C*-algebra of $C_c(G)$

Theorem (Renault, 1980)

There is a correspondence between

- representations of G on Hilbert bundles
- **②** contractive nondegenerate Hilbert (*-)representations of $C_c(G)$
- **3** contractive nondegenerate Hilbert (*-)representations of $C^*(G)$

Representations of groupoids on L^p bundles

What happens for representations on L^p spaces?

The notion of representation of G is defined as before, replacing L^2 with L^p

The construction of the integrated form of a representation goes through

Theorem (Gardella, L., 2014)

Every I-norm contractive nondegenerate homomorphism $\pi: C_c(G) \to L^p(\lambda)$ comes from a representation of G

Corollary

Every 1-norm contractive nondegenerate homomorphism

 $\pi: C_c(G) \to B(L^p(\lambda))$ is completely contractive

The groupoid L^p operator algebra

The groupoid L^p operator algebra $F^p(G)$ is enveloping algebra of $C_c(G)$ with respect to representations on L^p spaces

Theorem (Gardella, L., 2014)

There is a correspondence between

- representations of G on bundles of L^p spaces
- ② I-norm (completely) contractive nondegenerate representations of $C_c(G)$ on L^p spaces
- I-norm (completely) contractive nondegenerate representations of F^p(G) on L^p spaces

Table of Contents

L^p operator algebras

Groupoids and their representations

3 Groupoids and inverse semigroups of slices

The inverse semigroup of clopen slices

Let us consider the case when G^0 is compact zero-dimensional.

The representation theory of G is determined by a purely algebraic object

The collection Σ_G of clopen slices is a basis for G

If $A, B \in \Sigma_G$ define

$$AB = \{ \gamma \rho : \gamma \in A, \rho \in B \}$$

$$A^* = \{ \gamma^{-1} : \gamma \in A \}$$

This makes Σ_G a countable semigroup such that: for every $A \in \Sigma_G$ there is a unique $A^* \in \Sigma_G$ such that

$$AA^*A = A$$
 and $A^*AA^* = A^*$

This means that Σ_G is an inverse semigroup

The idempotent semilattice

Consider the set $E(\Sigma_G)$ of idempotent elements of Σ_G

The elements of $E(\Sigma_G)$ are precisely the clopen subsets of G^0

Thus $E(\Sigma_G)$ is just the Stone Boolean algebra of G^0

Representation of the semigroup of slices

Identify A with its characteristic function $\chi_A \in C_c(G)$

This makes Σ_G a multiplicative subsemigroup of $C_c(G)$

A representation

$$\pi: C_c(G) \to B(H)$$

induces by restriction a semigroup homomorphism from Σ_G to an inverse semigroup of partial isometries of H

Theorem (Renault 1980, Exel 2008)

This establishes a correspondence between

- **1** I-norm contractive nondegenerate (*-)representations of $C_c(G)$
- **2** tight homomorphisms from Σ_G to an inverse semigroup of partial isometries of H

Tightness

Tightness is a nondegeneracy condition introduced by Exel

Definition (Exel, 2008)

A homomorphism from Σ_G to an inverse semigroup of partial isometries of H is tight when it restricts to a Boolean algebra homomorphism from $E(\Sigma_G)$ to a Boolean algebra of projections of H.

This is formulated differently for more general groupoids.

From inner-product spaces to semi-inner product spaces

How to adapt this correspondence to the L^p case?

The notions of

- positive element
- orthogonal projection
- partial isometry

can be defined using the inner product of H

L^p spaces have something similar, called semi-inner product

Semi-inner product spaces

Definition (Lumer, 1961)

A semi-inner product on X is a function

$$[\cdot,\cdot]:X\times X\to\mathbb{C}$$

such that

- \bullet $[\cdot, \cdot]$ is linear in the first variable
- $[x,x] \ge 0$, and equality holds iff x=0
- $|[x,y]| \le [x,x]^{\frac{1}{2}} [y,y]^{\frac{1}{2}}$

This is an inner product precisely when it is linear in the second variable.

The associated norm is

$$||x|| = [x, x]^{\frac{1}{2}}$$

The canonical semi-inner product on L^p spaces

Consider on $L^p(\lambda)$ the semi-inner product

$$[f,g] = \|g\|_p^{2-p} \int \left(f \cdot \overline{g} \cdot |g|^{p-2}\right) d\lambda$$

It is the unique semi-inner product on $L^p(\lambda)$ inducing the usual norm

(All smooth Banach spaces have a unique semi-inner product structure)

Hermitian operators

Suppose that X is a semi-inner product space and $a \in B(X)$

The operator range of a is

$$W(A) = \{ [ax, x] : [x, x] = 1 \}$$

Theorem (Lumer, 1961)

The following are equivalent:

- $\mathbf{0}$ $W(A) \subset \mathbb{R}$
- **2** ||1 + ita|| = 1 + o(t) for $t \to 0$

In such case a is called hermitian

Example

When X = H and $a \in B(H)$ then a is hermitian iff it is self-adjoint.

Partial isometries L^p

It is natural to replace orthogonal projections with hermitian idempotent operators in $B(L^p(\lambda))$

This leads to the following definition:

Definitions

An operator $a \in B(L^p(\lambda))$ for $p \neq 2$ is a (spatial) partial isometry if there is $b \in B(L^p(\lambda))$ such that

ab and ba are hermitian idempotents

The Banach-Lamperti theorem

Partial isometries of L^p spaces have been characterized by Banach (1932). The first available proof is due to Lamperti (1958).

Theorem (Banach-Lamperti)

Partial isometries on $L^p(\lambda)$ for $p \neq 2$ are all of the form

$$f \mapsto g \cdot (f_{|A} \circ \phi^{-1})$$

where

- $lue{1}$ $A,B\subset Z$ are Borel
- **2** $\phi: A \rightarrow B$ is a measure-class preserving Borel isomorphism
- **3** $g: Z \to \mathbb{C}$ is Borel supported by B

Corollary $(p \neq 2)$

Partial isometries of $L^p(\lambda)$ form an inverse semigroup $S(L^p(\lambda))$

Back to groupoids

Suppose that G^0 is compact zero-dimensional, Σ_G is the countable inverse semigroup of clopen slices Consider for $p \neq 2$ a representation of G

$$\gamma \mapsto T_{\gamma} : L^{p}\left(\lambda_{s(\gamma)}\right) \to L^{p}\left(\lambda_{r(\gamma)}\right)$$

on a bundle of L^{p} spaces coming from the disintegration $\lambda=\int\lambda_{x}d\mu\left(x\right)$

Consider the homomorphism ρ from Σ_G to $\mathcal{S}\left(L^p(\lambda)\right)$ defined by

$$(\rho(A)\xi)_{|y} = T_{\gamma}\xi_{|s(\gamma)}$$

where γ is the unique element of A such that $r(\gamma) = y$

This is a tight homomorphism from Σ_G to $\mathcal{S}(L^p(\lambda))$

Theorem (Gardella, L., 2014)

Every tight homomorphism $\Sigma_G o \mathcal{S}\left(L^p\left(\lambda\right)\right)$ is of this form

Theorem (Gardella, L., 2014)

There is a correspondence between

- representations of G on bundles of L^p spaces
- ② I-norm (completely) contractive representations of $C_c(G)$ on $L^p(\lambda)$
- **3** tight homomorphisms from Σ_G to $\mathcal{S}(L^p(\lambda))$

Denote by $F_{tight}^{p}(\Sigma_{G})$ the enveloping algebra of $\mathbb{C}\Sigma_{G}$ corresponding to tight homomorphism in $\mathcal{S}(L^{p}(\lambda))$

Corollary

 $F^p(G)$ is (completely) isometrically isomorphic to $F^p_{tight}(\Sigma_G)$

One can define $F^p_{tight}(\Sigma)$ for any (abstract) inverse semigroup Σ

L^p analogs of Cuntz C*-algebras

Consider the inverse semigroup Σ generated by

$$\sigma_1, \ldots, \sigma_d, \sigma_1^*, \ldots, \sigma_d^*$$

together with a zero 0 and an identity 1 subject to the relations

$$\sigma_i^* \sigma_i = 1$$

$$\sigma_j^* \sigma_i = 0 \text{ for } i \neq j$$

In such case $F_{tight}^2\left(\Sigma\right)$ is the Cuntz algebra \mathcal{O}_d

while $F^{p}_{tight}\left(\Sigma\right)$ is the Phillips' L^{p} analog of the Cuntz algebra \mathcal{O}^{p}_{d}

The Cuntz-Krieger semigroup

Suppose that A is a $d \times d$ matrix with entries in $\{0,1\}$ satisfying Cuntz-Krieger condition (I)

Consider the inverse semigroup Σ_A generated by

$$\sigma_1,\ldots,\sigma_d,\sigma_1^*,\ldots,\sigma_d^*$$

together with a zero 0 subject to the relations

$$(\sigma_{i}^{*}\sigma_{i}) (\sigma_{j}\sigma_{j}^{*}) = A(i,j) (\sigma_{j}\sigma_{j}^{*}) = (\sigma_{j}\sigma_{j}^{*}) (\sigma_{i}^{*}\sigma_{i})$$

$$\sigma_{j}^{*}\sigma_{i} = 0 \text{ for } i \neq j$$

$$(\sigma_{j}^{*}\sigma_{j}) (\sigma_{i}^{*}\sigma_{i}) = (\sigma_{i}^{*}\sigma_{i}) (\sigma_{j}^{*}\sigma_{j})$$

 $F_{tight}^{2}\left(\Sigma_{A}
ight)\cong\mathcal{O}_{A}$ is a Cuntz-Krieger algebra

 $F^p_{tight}(\Sigma_A) = \mathcal{O}^p_A$ can be seen as L^p analog of Cuntz-Krieger algebras

Future work

- Uniqueness theorems for representations
- Simplicity
- Interpolation
- Quotients It is not known if L^p operator algebras are closed by taking quotients What about quotients of $F^p(G)$?
- **3** Second dual Any L^p operator algebra is Arens regular (Daws, 2004) Moreover A^{**} is again an L^p operator algebra with
 - the Arens product
 - the bidual p-operator space structure